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Motivation

A cultural
”
gap“ between two communities.

I Theorem proving:
I Sound formal development of theories on top of a small trusted kernel.
I Computations reduced to logical inferences.
I Correct but inconvenient to use and painfully slow.

I Computer algebra:
I Elaboration of mathematics by paper-and-pencil or TP software.
I Separate implementation in mathematical software systems.
I Convenient to use and reasonably fast but highly untrustworthy.

How can we bridge this gap?
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Our Starting Point: Polynomial Algebra

An Isabelle package in which the working mathematician can develop

I Mathematical theories based on an abstract view of polynomials.
I Type-checked definitions and theorems.
I Computer-supported/mechanically verified proofs.

I Algorithms based on the defined mathematical notions.
I Executable with

”
reasonable“ efficiency (rapid prototyping).

I Formal specification and computer-supported verification.

A single computer-supported formal framework for proving and computing
with (multivariate) polynomials.
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Polynomials

What is the polynomial written as 2x3 − 5x + 7?

I Traditional: the symbolic expression itself.(∑n
i=0 aix

i
)
·
(∑m

j=0 bjx
j
)

=
∑m+n

k=0

(∑i+j=k
i∈N0,j∈N0

ai · bj

)
· xk

I Computer science: an array [7, 5, 0, 3]

int[] mult(int[] a, int[] b)

{

int m = a.length-1; int n = b.length-1;

int[] c = new int[m+n+1];

for (int i = 0; i <= m; i++)

for (int j = 0; j <= n; j++)

c[i+j] += a[i]*b[j];

return c;

}

Two representations of a more fundamental concept.
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Polynomials

The more fundamental concept is the modern view of polynomials.

I Polynomial: a function [0 7→ 7, . . . , 3 7→ 3, 4 7→ 0, 5 7→ 0, . . .]

Let R be a ring. A (univariate) polynomial over R is a
mapping p : N0 → R, n 7→ pn, such that pn = 0 nearly
everywhere, i.e., for all but finitely many values of n.

I Elegant mathematics:

· : (N0 → R)× (N0 → R)→ (N0 → R)

a · b := k ∈ N0 7→
∑i+j=k

i∈N0,j∈N0
ai · bj

I Polynomial ring: R[x ]

The set of polynomials with (+) and (·); variable x just
denotes the polynomial [0 7→ 0, 1 7→ 1, 2 7→ 0, 3 7→ 0, . . .].

See e.g. [Winkler, 1996].
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Multivariate Polynomials

What is a polynomial 3x2y + 5yz in variables x , y , z?

I Polynomial: a function [(1, 1, 0) 7→ 3, (0, 1, 1) 7→ 5, (0, 0, 0) 7→ 0, . . .]

An n-variate polynomial over the ring R is a mapping
p : Nn

0 → R, (i1, . . . , in) 7→ pi1,...,in , such that pi1,...,in = 0 nearly
everywhere.

I Polynomial ring: R[x1, . . . , xn]

The set of all n-variate polynomials over R; variable xi
denotes the polynomial [. . . , i 7→ 1, . . .].

I Isomorphism: R[x1, . . . , xn] ' (R[x1, . . . , xn−1])[xn].

Recursive algorithms may be devised for many (not all)
computational problems on multivariate polynomials.

I Polynomial division is defined on K [x ] where K is a field.
I But K [x1, . . . , xn−1] is only a ring.
I Multivariate polynomials thus only support

”
pseudo-division“.
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Computer Representation

I Prune mapping:
I Represent only exponents/monomials with non-zero coefficients.

I Univariate polynomial representations:
I Dense: coefficient sequence [c0, . . . , cn]
I Sparse: exponent/coeff. sequence [(e0, c0), . . . , (er , cr )] with ei < ei+1.

I n-variate polynomial representations:
I Recursive: univariate polynomial whose coefficients are (n − 1)-variate

polynomials (represented densely or sparsely).
I Distributive: monomial/coefficient sequence [(m0, c0), . . . , (mr , cr )]

(typically represented sparsely).
I Total order on monomials required for unique representation.

I Algorithmic efficiency:
I Recursive algorithms based on isomorphism operate most efficiently

with recursive representation.
I Buchberger’s Gröbner bases algorithm processes terms in any given

”
admissible“ order and profits from distributive rep. in that order.
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General Approach

abstract type

representations dense sparse
recursive

distributive

Map from monomials to coefficients

• Elegantly define basic operations
• Conveniently express algorithms,

theorems, and proofs

refinement • Theorems are preserved

• Representation values can instantiate
variables of abstract type.

executable
codegeneration

Every abstract algorithm is executable
with every representation type.
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Implementation in Isabelle

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b | almost-everywhere-zero f }

′a mpoly

′a poly-rec ′a poly-distr

∼=
(nat ⇒0 nat) ⇒0

′a

datatype

= Coeff ′a
| Rec (nat ⇒0

′a poly-rec)

∼=
′a mpoly × monom-order

((nat ⇒0 nat) × ′a) list × monom-order

Rep

Rec Distr

factor out dense &
sparse implementations
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Design choice: number of variables

Should the number of variables show up in the type?

′a mpoly vs. ′a poly poly . . . poly vs. ( ′a, 7) mpoly

I Algorithms change number of variables dynamically.

I No computation on types

( ′a, 4 + 3) mpoly 6= ( ′a, 2 + 5) mpoly

I Polynomials over an unbounded number of variables

Derived notion variable number:
the highest index of a variable with non-zero coefficient.

Implicitly extend polynomials as needed.
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Exploit the Representation in Abstract Algorithms

Example:

I Gröbner bases algorithm depends on a monomial order.

I Efficiency relies on fast access to leading monomial in that order.

′a mpoly vs. ′a mpoly × monom-order

I Algebraic type classes require uniqueness of polynomials.

I Algorithm receives representational details as parameter.

I If polynomial’s representation fits to the parameter, execution is fast.

Otherwise, convert polynomial . . . or search . . .

I No static checks, no efficiency guarantees!
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Open Problem: Controlling Representations

I What happens when we combine two polynomials?

+ Rec Distr.
Rec Rec ???

Distr ??? Distr

How can we make contextual information available?

I How can the user specify the representations?

value (2 :: int poly) * 3

Recursive or distributive? Dense or Sparse? Which monomial order?

In CAS, the user declares his choice as a configuration option.
Can we mimick this in Isabelle?
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The Ubiquituous Type Class zero

typedef ′a ⇒0
′b = { f :: ′a ⇒ ′b :: zero | almost-everywhere-zero f }

There is no map function for ′b that satisfies

map f ◦ map g = map (f ◦ g)

BNF ⇒0 is not a BNF!
Must construct ′a poly-rec manually

Lifting Quotient theorem only for relations that respect zero
No parametrised correspondence relations

Transfer Transfer rules must restrict function space
===> is too weak

Library Re-implement finite maps with the invariant 0 /∈ ran m
How can we improve reuse?
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Summary

Current state of multivariate polynomials in Isabelle:

Design seems good

Prototype of abstract and representation types with minimal set of
operations

Lemmas and algorithm implementations are still missing

Up for discussion:

I User-friendliness/convenience for the working mathematician.

I Control of representations

I Better integration with Isabelle packages
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