
Animating the Formalised Semantics
of a Java-like Language∗

Andreas Lochbihler, Lukas Bulwahn

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

Goals

Study whether code generation works in the large.

∗This work has been published at ITP 2011[3]. We acknowledge funding from DFG grants Sn11/10-1,2 and DFG doctorate program 1480 (PUMA).

Validate the semantics by running test programs from test suites such as
Jacks [1], OpenJDK [4], and Jbook [5].

JinjaThreads
semantics

λ
→

∀
=Is

ab
el
le

β

α

HOL

code generator

SML

OCaml

Haskell test tool

test cases

test result

JinjaThreads

JinjaThreads [2] models a substantial subset of multithreaded Java source and
bytecode. Executability was of little concern throughout its development. Now,
we have generated code via Isabelle’s code generator for all definitions in green
boxes in the structure diagram below.

interleaving scheduler Java memory model

concurrent semantics

declarations lookup functions subtyping

general infrastructure

small-step semantics

type system

source code

virtual machine

bytecode verifier

bytecode

compiler

Code Generation in Isabelle

Execution is rewriting with unconditional equations.

SML
code

generatorfunctional
interpreter

predicate
compiler

refinement

inductive definition

specification

Correctness Code generation partially correct w.r.t. all models of HOL, be-
cause rewriting in the logic can simulate the execution.

Program Refinement Locally derive new (code) equations to use upon code
generation, as any (executable) equational theorem suffices for code gener-
ation. Existing definitions and proofs remain unaffected.

definition is_prefix xs ys = (∃zs. ys = xs @ zs)
lemma is_prefix [] ys = True

is_prefix (x#xs) [] = False
is_prefix (x#xs) (y#ys) = (x = y ∧ is_prefix xs ys)

Data Refinement Replace constructors of a datatype by other constants and
derive equations for code generation that pattern-match on these new (pseu-
do-)constructors.

datatype α list = [] | α # α list
definition Lazy :: (unit⇒ (α × α list) option)⇒ α list where . . .
lemma is_prefix (Lazy xs) (Lazy ys) = . . .

Inductive Definitions Generate from inductive definitions (type systems, op-
erational semantics) code equations for a functional interpreter.

Γ V = bTc Γ ` e :: U U :≤ T
Γ ` V := e :: Void

code_pred (modes: i⇒ i⇒ o⇒ bool as infer_type,
i⇒ i⇒ i⇒ bool as type_check) _ ` _ :: _

Reasons for Non-Executability

The original specifications contained inherently non-executable
parts (Hilbert’s ε-operator). We replaced them by

appropriately modelling underspecification and refinement, or

new specifications.

We developed and applied three solutions:

Solution 1: Change definition to full specification

P
P y

P (εx. P x)
Example: Find a fresh address for memory allocation

Replace definition new_Addr h = (εa. h a = None)
with definition new_Addr h = (LEAST a. h a = None)
and implement as lemma new_Addr h = find_least h 0

find_least h a = . . .

Solution 2: Switch from function to relation

Example: Notify thread in wait set of monitor m
Replace upd_wset ws (Notify m) = ws(m := ws m − (εt. t ∈ ws m))

with
t ∈ ws m

upd_wset ws (Notify m) (ws(m := ws m− t))

Solution 3: Parametrize the choice function

Example: Kildall’s work list algorithm
Replace definition kildall = while (λ(τ,w). w 6=∅) (λ(τ,w). . . . (εx. x∈w) . . .)
with locale kildall_choice = fixes ch :: . . . assumes w 6= ∅ =⇒ ch w ∈ w

definition (in kildall_choice)
kildall = while (λ(τs, w). w 6= ∅) (λ(τs, w). . . . (ch w) . . .)

interpretation kildall_choice <concrete choice implementation>

Mode Annotations Guide Program Synthesis

Type checking & type inference
i⇒ i⇒ i⇒ bool i⇒ i⇒ o⇒ bool

Γ V = bTc Γ ` e :: U U :≤ T

Γ ` V := e :: Void

infer e’s type, check subtyping
does not terminate enumerate subtypes, type check e

Disallow non-terminating modes through mode annotations.

Gain better performance as mode checking is faster than mode inference.

Efficiency

Run times (in seconds) for running a producer-consumer program on n integer
objects for different adjustments to the interpreter; — denotes timeout after 1h.

ring
buffer

producer
thread

consumer
thread

without with clause almost heap as with
n adjustments indexing strict red-black tree tabulation

10 229.9 1.9 .1 <.1 <.1
100 2, 240.3 14.1 1.7 .7 .6

1,000 — 625.6 492.3 7.2 6.2
10,000 — — — 71.8 62.6

References
[1] Jacks is an automated compiler killing suite, November 2005. http://sourceware.org/cgi-bin/

cvsweb.cgi/~checkout~/jacks/jacks.html?cvsroot=mauve.

[2] A. Lochbihler. Jinja with threads. In G. Klein, T. Nipkow, and L. Paulson, editors, The Archive of Formal Proofs.
http://afp.sourceforge.net/entries/JinjaThreads.shtml, 2011. Formal proof development.

[3] A. Lochbihler and L. Bulwahn. Animating the formalised semantics of a Java-like language. In Interactive
Theorem Proving, volume 6898 of LNCS, pages 216–232. Springer, 2011.

[4] OpenJDK 6. http://openjdk.java.net/.

[5] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer, 2001.

