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Context

What makes a good proof assistant?

Proof assistants = Tools for

Defining mathematical concepts ’ Expressive definitions ‘

Proving facts about them Powerful automation

collatz : | Nat | — | LazyList (Nat)
[ ifn<A

collatz (n) = collatz(n/2) ifn>1and neven

n ## collatz(3+n-+1) if n> 1 and nodd | corecursion |



Big proofs about programs in Isabelle

selL4

Microkernel
Klein et al.

Flyspeck

Programs in Hales’s proof
of the Kepler conjecture
Bauer, Nipkow, Obua

JinjaThreads

Java compiler & JMM
Lochbihler

(an incomplete list)

CAVA

LTL model checker
Lammich, Nipkow et al.

CoCon

Conference management
system
Kanav, Lammich, Popescu

IsaFoR/CeTA

Termination proof certifier
Sternagel, Thiemann et al.

Markov_Models

pCTL model checker
Holzl, Nipkow

PDF-Compiler

Probability density functions
compiler
Eberl, Hélzl, Nipkow

IsaSAT

SAT solver with WL
Fleury, Blanchette et al.



Codatatypes and Corecursion




Types with infinite values
type finite values infinite values

nat 0,1,2,3,...
enat 0,1,2,3, ... oo
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Types with infinite values

type finite values infinite values
0, S(0), S(S(0)), S(S(S(0))), ...

nat 0,1,2,3,...

enat 0,1,2,3,... 0

0, 5(0), 5(5(0)), S(8(8(0))), ... S(S(S(S(S(--)))))

list [], [O], [0,0], [0,1,2,3,4],
stream [0,0,0,...],[1,2,3,...],[0,1,0,1,.. ], ...
llist . [0], [0,0], [0,1,2,3,4], ... [0,0,0,..],[1,2,3,...],[0,1,0,1,..], ...
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no distinction in Haskell


No recursion on codatatypes

datatype nat =0 | Suc nat
codatatype enat Zero | eSuc enat

Suppose we could do recursion on codatatypes ...

0
Suc (to_nat n)

to_nat Zero
| to_nat (eSuc n)



No recursion on codatatypes

datatype nat =0 | Suc nat
codatatype enat Zero | eSuc enat

Suppose we could do recursion on codatatypes ...

to_nat Zero =0
| to_nat (eSuc n) Suc (to_nat n)

... but codatatypes are not well-founded: o = eSuc o

to_nat «~ = to_nat (eSuc «~) = Suc (to_nat o)

n = 14+n

False



Building infinite values

Recursion Corecursion
e datatype as argument e codatatype as result
e peel off one constructor e produce one constructor
e recursive call only on e corecursive call only in
arguments of the constructor arguments to the constructor

oo = eSuc oo



Computing with infinite values
Computing with codatatypes is pattern matching on results

Definition (Productivity)
We can inspect arbitrary finite amounts of output in finitely many steps.



Am | productive?




 Let's play a game. The game is called "Am I productive" 
and it is not about my personality. 


S =0 ## s




 Rather, I give you a Haskell definition of an infinite list
and we discuss whether it is productive or not. A definition
is productive if we can evaluate its nth element for any n
(given enough resources).



Obviously productive. infinite list of zeros. 
primitively corecursive (the right hand side is a constructor immediately
followed by a corecursive occurrence)
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 Rather, I give you a Haskell definition of an infinite list
and we discuss whether it is productive or not. A definition
is productive if we can evaluate its nth element for any n
(given enough resources).



Obviously productive. infinite list of zeros. 
primitively corecursive (the right hand side is a constructor immediately
followed by a corecursive occurrence)


$ ghci
Prelude> s = 0 : s

Prelude> take 5 s
[0,0,0,0,0]
Prelude>




s = 0 ## stl s




How about this one? What is the second element of s?



It is the second element of s! s is not productive.
Notice the tail between the constructor the corecursive occurrence.
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How about this one? What is the second element of s?



It is the second element of s! s is not productive.
Notice the tail between the constructor the corecursive occurrence.


$ ghci
Prelude> s = 0 : tail s

Prelude> take 5 s
[0~CInterrupted
Prelude>




S =0 ## 1 ## s




This one?



Productive. Not primitively corecursive. 
There are two constructors before the corecursive occurrence.
We call this corecursive up to constructors.


S =0 ## 1 ## s

v

corecursion up to constructors




This one?



Productive. Not primitively corecursive. 
There are two constructors before the corecursive occurrence.
We call this corecursive up to constructors.


eo s = shd s ## eo (stl (stl s))




Here is definition that takes a list s as input.
We assume that we can access any element of s.



eo keeps every other element of the input.


eo s = shd s ## eo (stl (stl s))
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Here is definition that takes a list s as input.
We assume that we can access any element of s.



eo keeps every other element of the input.


s =0 ## 1 ## eo s




 This one is interesting. First element: 0. Second element: 1.
Third element: 0. Fourth element: 0. Fifth element: hmmm.



We've seen a similar example with tail. 
There is something bad about eo as well as there is about tail.


s =0 ## 1 ## eo s

X

eo evil




 This one is interesting. First element: 0. Second element: 1.
Third element: 0. Fourth element: 0. Fifth element: hmmm.



We've seen a similar example with tail. 
There is something bad about eo as well as there is about tail.


s @& t = (shd s + shd t) ## (stl s & stl t)




Pointwise sum of two lists.



Primitively corecursive and therefore productive.


s @& t = (shd s + shd t) ## (stl s & stl t)

primitive corecusion




Pointwise sum of two lists.



Primitively corecursive and therefore productive.


s @ t = (shd s x shd t) # (stl s ® t & s ® stl t)




Looks familiar. Fibonacci.



Productive. Corecursive up to constructors and sum of lists. <point to oplus>


s @ t = (shd s x shd t) ## (stl s ® t & s ® stl t)

corecursion up to &




Looks familiar. Fibonacci.



Productive. Corecursive up to constructors and sum of lists. <point to oplus>


The standard definition




Shuffle product of two lists. Looks a little bit like the product rule
for derivatives in calculus.


s =0 ## ((1 ## s) O s)




Productive. Corecursive up to sum of lists. <point to oplus>


s =0 ## ((1 ## s) O s)

corecursion up-to constructors and &




Productive. Corecursive up to sum of lists. <point to oplus>


s = (0 ## 1 ## s) & (0 ## s)




same as previous version
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same as previous version


s = (1 # s) ® (1 ## s)




Factorial numbers


s = (1 # s) ® (1 ## s)

corecursion up to constructors and ®
® comes before the guard




Factorial numbers


selfie s = shd s ## selfie (selfie (stl s) ¢ selfie s)



selfie s = shd s ## selfie (selfie (stl s) ¢ selfie s)

corecursion up to @ and selfie [sic!]



mn= if (m =0 & n > 1) || gcd m n ==
then n # s (m x n) (n + 1)
else s m (n + 1)




Last one. Weird, not every corecursive call is guarded by a constructor.
Nonproductive?
Wrong. It's productive. The unguarded call can be unfolded a finite number of
times to reach a guarded call. The whole thing is additionally up to sum of
lists. "s 1" computes a very interesting infinite list. I'll invite the first
person who, without using a computer, tells me what "s 1" is by the end of the
talk for a drink. Prime numbers!


mn= if (m =0 & n > 1) || gcd m n ==
then n # s (m x n) (n + 1)
else s m (n + 1)

mixed recursion/primitive corecursion




Last one. Weird, not every corecursive call is guarded by a constructor.
Nonproductive?
Wrong. It's productive. The unguarded call can be unfolded a finite number of
times to reach a guarded call. The whole thing is additionally up to sum of
lists. "s 1" computes a very interesting infinite list. I'll invite the first
person who, without using a computer, tells me what "s 1" is by the end of the
talk for a drink. Prime numbers!


sn= if n >0
then stl (s (n - 1)) & (0 # s (n + 1))
else 1 ## s 1



sn= if n > 0
then stl (s (n - 1)) & (0 ## s (n + 1))
else 1 ## s 1

stl really evil
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Programming Language Examples
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Our Line of Work

Foundational framework s

defining a” the green stuff and more

in an LCF-style proof assistant ( >

parametricity
Burden on the USET: prove o here and there
termination

Most of the time: automaTIC
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Guiding Principle

LCF PhllOSOphy Reduce everything to a small trusted kernel

simply typed lambda calculus +

e\\e “OL ) . ) .
classical higher-order logic (axioms
Kernel of \% .g 9 . ( )+

nonrecursive constant definition +
nonrecursive type definition

Our agenda make Isabelle/HOL a (co)recursion-friendly environment
LICS12 ITP'14 IJCAR'14 ESOP'15 ICFP’'15 ESOP17 LICS17



Related Work
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clocks (Atkey & McBride)

guards (Clouston et al.)

abstract GSOS (Milius et al.)
companions (Pous & Rot)

type system

type system

type system

category theory
category theory (“up-to”)



Related Work

Guarded Corecursion / Proof Assistants

- FRP (Krishnaswami & Benton, ...) type system

- clocks (Atkey & McBride) type system
- guards (Clouston et al.) type system
- abstract GSOS (Milius et al.) category theory
- companions (Pous & Rot) category theory (“up-to”)
Coq, Lean constructor guarded corecursion built-in
Agda copatterns + sized types built-in + type system

up-to techniques, Thu@POPL g
Dafny  mixed recursion/corecursion built-in



Related Work

Guarded Corecursion / Proof Assistants

- FRP (Krishnaswami & Benton, ...) type system

- clocks (Atkey & McBride) type system
- guards (Clouston et al.) type system
- abstract GSOS (Milius et al.) category theory
- companions (Pous & Rot) category theory (“up-to”)
Coq, Lean constructor guarded corecursion built-in
Agda copatterns + sized types built-in + type system

up-to techniques, Thu@POPL %
Dafny  mixed recursion/corecursion built-in

Isabelle’ corecursion up-to friendly operations smart corecursor
mixed with recursion + wellfounded recursion
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codatatype Stream = Int ## Stream
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Primitive Corecursor

codatatype Stream = Int ## Stream
— Stream = gfp (Int x —)
—corec” : (A— Int x A) — A — Stream

primcorec s®t= (shd s+ shdt)##(stl sPstlt)
— S t=corec” (A(s,t). ((shd s+shd t), (stl s, stl t))) (s.t)



Primitive Corecursor

codatatype C= ---
—~C=gfpF
—corec” : (A=~ FA) A= C

primcorec f x =

— [ X=corec? (A(x). - ) (¥)

(Assuming F is a bounded natural functor)



Smart Corecursor

corec” : (A= FA) - A—C



Smart Corecursor

corecy : (A— M (F (MA)) —~A—C



Smart Corecursor
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Smart Corecursor
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Smart Corecursor
corec”: (A— FA) - A— C
corecy : (A— M (F (lA)) —~A—C
corec? : (A~ @ (F (@A) ~A—C
corecs : (A— @ (F (BA)) -A—C

corec S®t = (shd sxshd t)##(stls®t & s®stl t)

— S t=corec? (A(s,1).
n((shd sxshd t), n(stl s, t)®n(s, st t))) (s.1)

- D BMA-BA—-BA
-n:A—-EA



® : C — C — C has to be friendly

A friendly function can consume
one constructor to produce
at least one constructor.
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® : C — C — C has to be friendly

Jparametric p, : (AxX FA) = (AxFA)— F (B A) s.t.
s@t="--(pg (--- (s.1)))

e (Ax (Int x A)) — (Ax (Int x A)) — (Int x B A)
ps (S, hs, ts) (t, ht, tt) = (hsxht,nts@nt & nsn tt)



Isabelle Demo
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Streams and Infinite Trees

codatatype ’'a stream = e I R

SCons (shd: ’a) [0,1,2,3,4,5,6,...]

(stl: ’"a stream)



Streams and Infinite Trees

codatatype ’'a stream =
SCons (shd: 'a)
(stl: ’"a stream)

codatatype 'a tree =
Node (left: 'a tree)
(root: ’a)

(right: 'a tree)

up = 0 ## smap (Ax. x + 1) up
[0,1,2,3,4,5,6,...]

3 5 4 6
SN N A



Streams and Infinite Trees

codatatype ’'a stream =
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Streams and Infinite Trees

codatatype ’'a stream = e I R

SCons (shd: ’a) [0,1,2,3,4,5,6,...]

(stl: ’"a stream)

codatatype ’a tree = 1 \%‘ 2
Node (left: ' )
> (rioi: ':)tree / \ / \
(right: 'a tree) 3 6
/NN /\

tnum = Node (tmap (Ax. 2 * x + 1) tnum)
0 (tmap (Ax. 2 * x + 2) tnum)



Streams and Infinite Trees

codatatype ’'a stream = e I R

SCons (shd: ’a) [0,1,2,3,4,5,6,...]

(stl: ’"a stream)

stream_of
0

codatatype 'a tree =
=5iE S Y \ﬁ‘% /N
(right: 'a tree)
/\ /\

tnum = Node (tmap (Ax. 2 * x + 1) tnum)
0 (tmap (Ax. 2 * x + 2) tnum)



Tree chopping

Remove the root of a tree:

A



Tree chopping

Remove the root of a tree:

PR



Coinductive traces for a WHILE langauge

Syntax
com ::= SKIP
ATOM atom

IF test com com

|
| com ;; com
|
| WHILE test com com

Semantic domain
step: state update or test result
trace: [ step” | state] or step™

codatatype trace
= Final state
| Step step trace

process: state = trace



Coinductive traces for a WHILE langauge

Syntax Semantic domain

com = SKIP step: state update or test result
| ATOM atom trace: [ step” | state] or step™
| com ;; com codatatype trace
| IF test com com = Final state
| WHILE test com com | Step step trace

process: state = trace

Trace semantics

[ _] :: com = process

[ SKIP ] =(4s. [[s])

[ ATOM atom || = (4s. [ Update s | evalA atom s ])



Stream processors

Read finite amount of input,
then produce some output

stream

abaabccb. .. XYXXZ...

processor




Stream processors

Read finite amount of input,
then produce some output

stream
processor

abaabccb... —— XYXXZ...

datatype (’'in, 'out, 'c) spy
= Get (’'in = (’in, 'out, ’'c) spy)
| Put 'out 'c
codatatype (’'in, ’out) sp, =
In (out: (’in, ’'out, (’in,’out) spy) spy)



Stream processors

Read finite amount of input,
then produce some output

stream
processor

abaabccb... —— XYXXZ...

datatype ('in, 'out, 'c) sp,
= Get ('in = (’'in, 'out, 'c) spy)
| Put 'out 'c
codatatype (’'in, 'out) sp, =
In (out: (’in, ’out, ('in,’out) spy) spu)

Calculator example by Hur et al. [POPL 2013]



Equirecursive types
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Equirecursive types

. . VRN
Semantics: Infinite types a /—>\
a —
codatatype type AN
= TVar var a —
/ N
| type — type a

Syntax: Recursive types

datatype ty
= Var var
| Arrow ty ty
| Mu var ty

Mu X. Arrow (Var a) (Var X)



Equirecursive types

_)
. .. VRN
Semantics: Infinite types a /—>\
a —
codatatype type AN
= TVar var a —
/ N
| type — type a

[_] = ty=type
[MuXT] = [X— [MuXT]] - [T]

Syntax: Recursive types

datatype ty
= Var var
| Arrow ty ty
| Mu var ty

Mu X. Arrow (Var a) (Var X)



Outlook

e Stern-Brocot tree of rational numbers
http://www.isa-afp.org/entries/Stern_Brocot.shtml

e Knuth-Morris-Pratt string matching
[ESOP 2017]

e Regular languages via Brzozowski derivatives
[FSCD 2016]

¢ Probabilistic reactive programming
CryptHOL
TLS in Isabelle


http://www.isa-afp.org/entries/Stern_Brocot.shtml
http://dx.doi.org/10.1007/978-3-662-54434-1_5
http://people.inf.ethz.ch/trayteld/papers/fscd16-coind_lang/index.html
http://eprint.iacr.org/2017/753
http://andreas-lochbihler.de/pub/lochbihler14iw.pdf
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