Andreas Lochbihler

University of Passau

Germany

01,/13/2008

Funded by DFG grant Sn11/10-1
o F nQ
I Type Safe Nondeterminism FOOL'08 1/17

?

© Motivation
© Java threads

© Formalisation

@ The Jinja and framework semantics
@ Deadlock vs. progress

@ Type safety for Jinja

© Summary

Our goal:

@ Formalise Java thread semantics
@ Show type safety

@ In a theorem prover

Benefits: Solid basis for formal verification problems
o Language based security (LBS)
@ Proof carrying code (PCC)

Starting point: Jinja semantics (Nipkow, Klein, TOPLAS'06)

Type safety

@ Well-typed programs evaluate fully and
@ No untrapped errors can occur

Proof technique (Wright, Felleisen '94):
Progress Semantics cannot get stuck
(as long as some threads are not deadlocked yet)

Preservation Evaluating a well-typed statement results in another

well-typed statement with equal or smaller type
Challenge:

Deadlock can break progress property

@ Dual nature of threads:

o Objects of class Thread

o Execution contexts spawned by start ()

@ Communication via shared memory
@ Synchronization via locking

@ Deadlocks to break progress

@ Synthesized methods in Object:
e wait ()
e notify ()

e notifyAll ()

Thread (I)

Thread (II)
synchronized (f) { synchronized (g) {
synchronized (g) { synchronized (e) {
g.wait(); g.notify();
} }
} }
Objects e f g
Wiait set: {} {}
Locked by:

synchronized (e) {

synchronized (f) {

Thread (I1)

synchronized (£f) {

synchronized (g) {

Thread (I)

g-wait

}
}

Request lock on £

ObjeCts
Wait set:
Locked by

Thread (11)

synchronized (g) {

synchronized (e) {

g.notify();

synchronized (e) {

synchronized (f) {

Thread (I11)

synchronized (£f) {

synchronized (g) {

Thread (I)

g-wait

synchronized (e) {
g.notify();
| }
}
Objects _ f |
Walt Set: {} {}
Locked by

Thread (11)

synchronized (g) {

synchronized (e) {

synchronized (f) {

Thread (I11)

synchronized (f) {

synchronized (g) {

Thread (I)

g-wait

}
}
Objects _
Walt Set: {}
Locked by

}
}

Thread (11)

synchronized (g) {

synchronized (e) {

g.notify();

Request lock on g

synchronized (e) {

synchronized (f) {

Thread (I11)

synchronized (f) {

synchronized (g) {

Thread (I)

g-wait

synchronized (e) {
g.notify();
| }
}
Objects _ f |
Walt Set: {} {}
Locked by

Thread (11)

synchronized (g) {

{
I

synchronized (e) {

synchronized (f) {

Thread (I11)

synchronized (f) {

synchronized (g) {

Thread (I)

g-wait

synchronized (e) {
g.notify();
| }
}
Objects _ f |
Walt Set: {} {}
Locked by

Thread (11)

synchronized (g) {

} ”
}

{
I

Thread (I11)

synchronized (e) {

synchronized (f) {

Request lock on e

O ®
®

synchronized (f) {

synchronized (g) {

Thread (I)

g-wait

synchronized (e) {
g.notify();
| }
| }
Objects _ f |
Walt Set: {} {}
Locked by: I

Thread (11)

synchronized (g) {

{
I

synchronized (e) {

synchronized (f) {

Thread (I11)

synchronized (f) {

synchronized (g) {

Thread (I)

g-wait

}
}

Request lock on g

ObjeCts
Wait set:
Locked by

{

Thread (11)

synchronized (g) {

synchronized (e) {

g.notify();

{
I

synchronized (e) {

synchronized (f) {

Thread (I11)

Thread (I)

synchronized (f) {

synchronized (g) {

g.wait ()

}
}

’

Thread (II)

synchronized (g) {
synchronized (e) {

g.notify();

}
}

Request lock on g Request lock on e
Objects e f g
Wait set: {} {}

Locked by: 11

{
I

synchronized (e) {

synchronized (f) {

Thread (I1)

Thread (I)

synchronized (f) {

Thread (II)
synchronized (g) {

g.wait();

}
}

Request lock on g

g.notify();

}
}

synchronized (g) {

Thread (|||)
synchronized (e) {

synchronized (e) {

synchronized (£f) {

}
}
Request lock on e Request lock on f
Objects e f g Deadlock
Wait set: {} {} {}
Locked by: 11 | 1 0
=} 5 = E £ DA

Thread (I)

Thread (||) Thread (|||)
synchronized (f) { synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Objects e f g
Wiait set: {} {}
Locked by:

Thread (I)
synchronized (f) {

Thread (||) Thread (|||)
synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Request lock on £
Objects e f g
Wiait set: {} {}
Locked by:

Thread (I)

Thread (||) Thread (|||)
synchronized (f) { synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Objects e f g
Wiait set: {} {}
Locked by:

Thread (I)

synchronized (f) {

Thread (||) Thread (|||)
synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Request lock on g
Objects e f g
Wiait set: {} {}
Locked by:

Thread (I)

synchronized (f) {

Thread (||) Thread (|||)
synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Objects e f g

Wiait set: {} {}
Locked by:

Thread (I)

Thread (||) Thread (|||)
synchronized (f) { synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
000 cee e
g.wait(); g.notify();
} } }
} } I
Objects e f g
Wiait set: {} {}
Locked by:

Thread (I)

Thread (||) Thread (|||)
synchronized (f) { synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Wait on notify
2
Objects e f
Wiait set: {} {}
Locked by:

— YW
| {1}

sYl’lChr niz (f) {
Synchro iz () {

g-wait 0

}

synchronized (g) {

Thread (lII)
synchronized (e) {
}

synchronized (e) {
g.notify();

synchronized (f) {
}
Wait on notify

}

}
Objects

Wait set:

Request lock on e
e
Locked by:

g @@
| i

— ()

synchronized (£f) {

synchronized (g) {

g-wait 0

synchronized (g) {

synchronized (e) {

synchronized (f) {

Thread (lII)

synchronized (e) {
g.notify();

} | }

} | }

Wait on notify

zzf__

s [T F] @@
Lo 0 0 iy
Locked by: ||| |

Thread (I)

Thread (||) Thread (|||)
synchronized (f) { synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (£f) {
g.wait(); g.notify();
} } }
} } I
Wait on notify Request lock on f
Objects e f g
Wiait set: {} {} {I}
Locked by: 11 |

7, :
.

\

.

Thread (I)

synchronized (f) {
synchronized (g) {

g.wait();

}
}

Wait on notify

Thread (II)

synchronized (g) {
synchronized (e) {

g.notify();

}
}

Request lock on g

Thread (I1)

synchronized (e) {
synchronized (f) {

}
}

Request lock on £

Objects e f g
Wiait set: {} {} {I}
Locked by: 11 |

Thread (I)

Thread (||) Thread (|||)
synchronized (f) { synchronized (g) { synchronized (e) {
synchronized (g) { synchronized (e) { synchronized (f) {
g.wait(); g.notify();
} } }
} } I
Wait on notify Request lock on f
Objects e f g
Wiait set: {} {} {I}
Locked by: 11 |

7, :
.

\

.

Thread (I)

synchronized (f) {
synchronized (g) {

g.wait();

}
}

Wait on notify

Thread (II)

synchronized (g) {
synchronized (e) {

g.notify();

}
}

Request lock on e

Thread (I1)

synchronized (e) {
synchronized (f) {

}
}

Request lock on £

Objects e f g
Wiait set: {} {} {I}
Locked by: 11 | I

Formal semantics for a Java subset in Isabelle/HOL:

Program operations: Jinja source code:
@ Object creation @ Operational semantics
o Casts @ Equivalence for small-step
o Literal values and big-step semantics
@ Binary operators o Type safety proof
@ Variable access and assignment (progress and preservation)
o Field access and assignment
Method call Bytecode:

o Method ca e .

) o @ Jinja Virtual Machine
@ Sequential composition .

_ o Bytecode verifier

o If-then-else, while)

_ _ @ Compiler from source to
@ Blocks with local variables bytecode
@ Exception throwing and handling

o = E E =

pick reduction
Framework) Jinja semantics
semantics < request thread actions + synchronized
Management of Thread actions for Single-thread semantics
@ Locks @ Locking and unlocking @ Reduction with list
@ Threads @ Thread spawning of thread actions
@ Wait sets @ Wait and notify ® Type system

Select thread and one of
its reductions such that
the thread actions are
feasible

Modularity: Separation of thread issues from
low-level Java details

O» «@F> «Z» «=>» E HAQ

Thread actions

Locking Lock a, Unlock a, UnlockFail a
Spawning NewThread t e h x, NewThreadFail

Wait sets Suspend a, Notify a, NotifyAll a
Reduction notation:

P (e (h x)) L2 (e, (h, X))

P+ (Is|es,h|ws) AR
P+ (Is|es,h|ws)

—

Jinja semantics
ttas
q*

(Is'|es’,h"|ws") Framework semantics

(Is'|es’,h’|ws’) ~ Transitive, reflexive closure

Thread.start ():

ha=0bjCfs
P C <* Thread

[ta]

—

ta = NewThread t (Var this-run()) h [this — Addr a]
P & (addr a-start(),(h, x))
Object.wait ():

<Unit,(h7 X)>

ha=gq
P+ (addr a-wait(),(h, x))
Monitor locking:

[Suspend a, Unlock a, Lock a]{> (

unit,(h, x))
[Lock a]
P+ (sync(addr a) e;s) ——>

(sync(locked(a)) e,s)
Unlocking at calls to wait ():

PF (es) 25 (¢s")

P+ (sync(locked(a)) e,s)

tas = Suspend a-tas’
tas @ [Unlock a] (sync(addr a) e’,s')
o «F = = Daco
TSI Type Safe Nondeterminism . FOOL'08 11 /17

Deadlock as a greatest fixpoint:

Deadlock as a greatest fixpoint:

Deadlock as a greatest fixpoint:

Deadlock as a greatest fixpoint:

Deadlock as a greatest fixpoint:

Coinductive definition in the framework:

Set of threads in deadlock = greatest set D of threads satisfying:
For all threads t, t is in D iff t is

@ not in a wait set and

e t can make progress on its own and

thread in D,
or

@ in every possible reduction, t requests a lock which is held by another

@ in a wait set and all other threads
e arein D or

o have terminated,

Independent of type systems and language-specific constructs
m] = = DQC
I Type Safe Nondeterminism FOOL'08 13 /17

V)
)

Theorem (Progress): If

@ there is a thread not in deadlock and

@ all threads can make progress on their own and
@ locks are held only by non-final threads and

@ the semantics behaves well w.r.t. thread actions,

then the framework semantics can make progress.

Formally:
est= (e x) - final e t ¢ deadlocked P Is es ws ¢
wf-progress P es ¢ estr¢ls/ ex-red P Is es c
t':tas’

Jt' tas’ es’ Is' ws' ¢’. P+ (ls|es,clws) =———p (Is'|es’,c’|ws")

Type safety:
For well-formed classes, during execution of a set of well-formed threads, every
thread with expression type T either

@ gets fully evaluated with type T/ < T, or
@ raises a controlled exception, or

@ deadlocks with type T < T

o
G

I

ul
it
(W)
0
o)

Type safety:
For well-formed classes, during execution of a set of well-formed threads, every
thread with expression type T either

@ gets fully evaluated with type T/ < T, or
@ raises a controlled exception, or

@ deadlocks with type T < T

wf-J-prog P est; Es/ P,Es t es,h /1 D1 es h
eske Is/ Fesfygh P </s|es,h|w§}t 25+ (15'|es’ h'|ws')
Bt tas es” Is'" ws” h". P+ (Is'|es’ h|ws") == (Is"|es” h"'|ws'")
Es'=Es[I~]p.\ ... / flatten (map snd tas)

Es < Es'A

(Vte Ix. es’ t= (e, x) —

(v.e'=ValvA (BET. Es't= (E, T) A P’ vi< T)) v

(3a. ¢’ = Throw a A a € dom h') v

(t € deadlocked P Is" es' ws" ' N (3ET. Es't = (E, T) A PEh' F e < T))

Anc hbihler

Quis Custodiet Ipsos Custodes?
Who's watching the guards?

= Reach a new level of reliability in Language Based Security

= Integrate semantics, theorem provers and program analysis with LBS

afp.sourceforge.net

Quis Custodiet Ipsos Custodes?
Who's watching the guards?

= Reach a new level of reliability in Language Based Security

= Integrate semantics, theorem provers and program analysis with LBS

CoreC++ (Wasserrab et al., OOPSLA'06)

Multiple inheritance in C++ is type-safe

afp.sourceforge.net

Quis Custodiet Ipsos Custodes?
Who's watching the guards?
= Reach a new level of reliability in Language Based Security

= Integrate semantics, theorem provers and program analysis with LBS

CoreC++ (Wasserrab et al., OOPSLA'06)
Multiple inheritance in C++ is type-safe

JinjaThreads in the Archive of Formal Proofs (afp.sourceforge.net):

e Framework formalisation: 5k lines (approx. 250 lemmata)
@ Jinja source code add-ons: 5k lines

afp.sourceforge.net

@ Proofs are machine-checked

Formal semantics for multithreaded Java (subset) and type safety
@ Features the most important thread primitives

@ Generic framework for lifting single-thread semantics

@ Deadlock formalisation and progress theorem
Starting point for:

@ Language based security

@ Proof carrying codes

Formal semantics for multithreaded Java (subset) and type safety
@ Features the most important thread primitives
@ Proofs are machine-checked

@ Generic framework for lifting single-thread semantics
@ Deadlock formalisation and progress theorem

Starting point for:
@ Language based security
@ Proof carrying codes

Future work:
o Multithreaded byte code in Jinja
@ Integrate duality of Java threads fully
@ Include the Java Memory Model

V)
0
)

	Motivation
	Java threads
	Formalisation
	The Jinja and framework semantics
	Deadlock vs. progress
	Type safety for Jinja

	Summary

